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Abstract. We propose to apply the method of moments not to the spectral density itself 
but rather to one of its derivatives. The spectral density obtained by integration is therefore 
continuous or smooth depending on the order of the derivative which is used. The problems 
arising from the fact that the derivatives of the spectral function are generally not positive 
definite have been resolved. An additional advantage of the method is its ability to 
reproduce singular spectral densities (e.g. van Hove singularities) as is shown for three 
illustrative examples. 

1. Introduction 

The methods of moments or Pad6 approximants and of continued fractions (for a 
review see Haydock 1980, Kelly 1980 and references cited therein) have been used 
extensively for the calculation of spectral densities. Provided that the first moments 
of a spectral density are known, these methods approximate the true spectral density 
in the sense that the given moments are reproduced. 

There are several methods for the determination of a spectral function from 
moments. The most straightforward procedure is the transformation of the problem 
of moments to a problem of continued fractions (Gaspard and Cyrot-Lackmann 1973). 
It turns out that this transformation is numerically unstable. The instability does not 
depend on this particular evaluation method, but is inherent in the problem of 
moments and other evaluation techniques are affected in a similar manner. It is the 
recursion method (Haydock 1980, Kelly 1980) which overcomes this basic difficulty. 
Although it is mathematically equivalent to the method of moments, the explicit use 
of the moments is avoided by tridiagonalisation of the operator of which the spectral 
density is to be calculated. This formulation of the problem allows for numerically 
stable recurrence relations for the coefficients of the same continued fraction as 
determined from the moments. 

A finite set of moments, of course, only determines a finite number of coefficients 
of the continued fraction. For the derivation of the spectral function from the continued 
fraction, two different procedures are commonly used. 

In the first method the continued fraction is truncated thus representing a rational 
function. It can be proved that for the true spectral function being positive definite, 
this rational function determines an approximate spectral function which consists of 
a series of 8-functions. In order to get a continuous spectrum, additional smoothing 
procedures are required (Nex 1978, Gaspard and Cyrot-Lackmann 1973). There is 
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a great deal of freedom in the choice of a smoothing method. It is only restricted by 
the condition that the given moments must not be changed. 

In the second method, the subsequent smoothing procedure is circumvented by a 
theory on the asymptotic behaviour of the coefficients of the continued fraction. By 
this theory the asymptotic behaviour of the coefficients is extrapolated from the known 
coefficients (Gaspard and Cyrot-Lackmann 1973) so that an analytic expression can 
be derived from the continued fraction from which a continuous spectral density is 
deduced. 

Both methods introduce an additional ingredient into the method of moments and 
can lead to difficulties in the vicinity of true singularities of the density of states. If 
the smoothing is too weak, band edges and van Hove singularities often produce 
spurious oscillations in the approximated density of states; if it is too strong, the 
structure of the spectrum is destroyed. 

Therefore it seems desirable to find a method which, on the one hand, is able to 
generate continuous approximants to the true spectral density, and which, on the other 
hand, remains flexible enough to produce the true singularities of the spectrum in an 
adequate manner. 

The aim of the present paper is to propose such a method which fulfils both 
conditions. Continuous approximantf to the spectral density are generated by applying 
the continued fraction method using moments not to the spectral density itself but 
rather to its derivatives. For the derivation of the spectral function we take the 
truncated continued fraction which is terminated according to the number of given 
moments. In general, the remaining rational function yields a spectral function 
consisting of a series of S -  functions. Approximating for instance the second derivative 
by a series of N &functions yields a piecewise linear continuous spectral density with 
N points of discontinuity of the derivative. Although the moments of the spectral 
function are trivially related to the moments of its derivatives (9  2), the application 
of the method of moments to the derivatives needs further consideration. 

First, a procedure which in analogy to the recursion method produces a continued 
fraction avoiding the use of moments does not seem to exist for this case. In order 
to exploit the advantages of the recursion method we transform the problem of 
moments to a problem of continued fractions in 9 3.  It is this transformation where 
the numerical instability of the method of moments comes into play. As long as the 
moments are known exactly and can be represented to a sufficient degree of accuracy 
on the calculator, this difficulty can be circumvented by multiple precision calculations. 
This is the case for our calculations. If, however, the moments are only known 
approximately, the applicability of the method becomes limited. Secondly, difficulties 
with this method arise from the fact that the derivatives are, of course, not positive 
definite. Therefore, it can happen that the terminated continued fraction has poles 
outside the real axis, which means that the problem has no solution in the strict 
mathematical sense since some of the values for the position of the S-functions become 
complex. In this case the approximant for the spectral density consists of steps, 
S-functions, and derivatives of 6 -functions besides the continuous contribution. 
However, our numerical examples indicate that these additional parts are of less 
importance than one would expect at first sight. Although for these examples the 
true spectral densities even have singularities, reasonable approximate solutions to 
the problem are obtained. 

These examples show an important advantage of our new method. It admits very 
easily the generation of discontinuous steps in the approximate spectral density. 
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Therefore no problems arise with van Hove singularities, which introduce the spurious 
oscillations, known from other methods, in the approximate spectral density. 

2. The method 

Consider the spectral density n (x). By a Cauchy-type integral we define the function 

+m dx n ( x )  

of the complex variable z. It is analytic in the upper and lower complex plane, provided 
that n (x) decays fast enough at infinity. The asymptotic expansion of this function at 
large z is given by 

where the coefficients Mi are the moments of n (x) of order 1, 
+m 

(2.3) 

In many situations it is relatively easy to calculate the moments of a spectral density 
though n ( x )  is not known. Therefore one can ask whether it is possible to determine 
n ( x )  from the moments. There are two ways for tackling the problem. First one can 
ask for a function f ( z )  with correct analytic properties which has the asymptotic 
expansion (2.2), or secondly one can ask for the solution of equation (2.3) for a given 
number of moments MI. Both questions are intimately related. The latter is the 
subject of the method of moments. 

The conventional problem of moments is the following (Akhiezer 1965, Shohat 
and Tamarkin 1963). Given an infinite set of numbers YJ? = {MO, MI, M2, . . .}, is it 
possible to find a non-decreasing function ~ ( x )  so that for all elements of 2R 

+m 

M~ = J-, x '  d&) (2.4) 

holds (Hamburger's problem of moments)? There is a unique solution of the problem 
if and only if all the determinants 

MOM1 , . * Mi 
MlM2 . . .  MtCl 1 = 0, 1, . . . , Di = . . .  

lMiMt+* - 9 .  M21 I 
are positive. Using only the first 2N moments {MO, MI, . . . , one can determine 
exact upper and lower bounds on the integrated spectral density ~ ( x ) .  In this case 
the spectral density (+'(x) = da/dx can be represented by a series of N &functions 

N 
&(x) = 1 pb(x -xi). 

i = l  
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This series approximates the true ( ~ ’ ( x )  in the sense that the first 2 N  moments of a k ( x ) ,  

M,[u~v(~)I= I_, dxx’alV(x), l = O ,  1 , .  . . , 2 N - 1 ,  (2.7) 

agree with those of ( ~ ’ ( x )  and that v N ( x ) ,  a step function, converges to the true 
integrated spectral density a ( x )  for N + CO. 

In physical applications the number of available moments is limited, and frequently 
it is not the integrated density of states but rather the density of states itself which is 
to be determined. Representing a continuous density of states by a series of S-functions 
is a poor approximation in such cases. Therefore additional smoothing procedures 
which are not inherent in the method of moments must be introduced (Nex 1978). 

In the present paper we suggest a different and more direct way of generating 
smooth approximate spectral functions from the moments. This method relies basically 
on the fact that the moments of a spectral function n ( x ) ,  (2.3), are closely related to 
the moments of the derivatives of n (x) 

+m 

+m 

Provided that all moments exist, it follows from partial integration of equation (2.8) 
that 

J-CC 

The first term vanishes because n ( x )  and its derivatives decrease at least exponentially 
at infinity; otherwise the moments of all orders would not exist. Comparing equations 
(2.8) and (2.9) we obtain 

MI”’ = - & f ; y .  (2.10) 

M y  = ( - f ) ( - l +  1) , . . (-1)Mb“-” 

This relation implies 

+m 

= ( - I ) ( - - l +  1 ) .  . . (-1) dx n ‘ ” - ” ( x )  
-m 

(2.11a) 

= O  

for 1 < v, and 

M:‘) = ( - l ) ( - I +  1) * . . (-I + v - l)Mi”_’” (2.116) 

for 1 z= v, respectively. 
Of course, we have to assume that n (x) is differentiable I/ times. This assumption 

is, however, no serious restriction on the class of allowed spectral functions, because 
it is always possible to modify a function which has a finite number of irregular points 
in such a way that it becomes differentiable up to a given order while the changes in 
the moments remain arbitrarily small. 

Knowing the moments of the derivatives of n ( x ) ,  we no longer try to approximate 
n ( x )  but rather its vth derivative n ( ” ’ ( x )  by a series of N S-functions so that the first 
2 N  moments of n ‘ ” ’ ( x )  are exactly represented. Provided that this problem has a 
solution, the approximate spectral function, which by construction reproduces exactly 



Continuous spectral densities from moments 3649 

the first 2 N  moments, is obtained by integrating the sum of S-functions v times. 
Hence the resulting n N ( x )  is continuous for v = 2 or differentiable (v -2) times for 
v > 2, respectively. 

The problem we are faced with can be stated as follows. Given a set of numbers 
{mo, m l ,  . . . , mzN-1), the first 2 N  non-trivial moments of n ( ” ) ( x ) ,  is it possible to find 
a sum of N &functions 

N 

j = l  
I = O ,  1 , .  . . , 2 N -  1, 1 

= 1 pjxi ,  

(2.12) 

(2.13) 

hold? At first sight the problem looks very similar to the common problem of moments. 
There is, however, one essential difference. The basic requirement for the theory of 
the classical problem of moments, namely a ’ ( x )  to be non-negative, is, in general, 
not fulfilled for n‘”)(x) .  Therefore the conventional theory for the existence of S- 
approximants is no longer applicable. At this stage we cannot decide whether a 
solution of our problem with real pi and xi actually exists. It seems to be very difficult 
to find out the necessary conditions on the set {mo, ml ,  . . . , m 2 ~ - 1 } .  

The following theorem, the proof of which is given in the appendix, states that at 
least a unique solution with complex values for pi and xi exists. Of course, in the case 
of complex xi  the expression (2.12) becomes meaningless. However, as we shall see 
later, it is possible to generalise the expression (2.12) in such a way that complex 
solutions are also admitted. 

Theorem. We are given a set of 2N complex numbers {mo, m l ,  . . . , m2N-1}, for which 
the determinant 

mo, m l ,  . .  . ” - 1  

m l ,  m2, . . .  mN 
DN = 

. . a  

” - - l ,  “ 7  * * * m2N-1 

Then in almost all cases a set of 

# 0. (2.14) 

N pairs of complex numbers 
{(PI, XI), ( p 2 ,  X Z ) ,  . . . , ( p ~ ,  X N ) }  exists so that the nodes xi are all different and the 
following equations hold: 

N 

j = l  
ml = 1 Pixf, l = O ,  1 , . . . ,  2N-1 .  (2.15) 

By the term ‘in almost all cases’ we want to exclude the somewhat more complicated 
situations for which some of the xi are equal. The case of such accidental degeneracies 
is not considered here. 

In physical applications spectral densities are real and therefore the ml are real as 
well. Then, as can be deduced from equation (2.15), the nodes xi are either real or 
pairwise complex conjugate. Accordingly we have to distinguish two different cases. 
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(i) All the nodes xi turn out to be real. Then the amplitudes pi  are real as well. 
We obtain 

+a) N 
I 

j = l  
( 2 . 1 6 )  

where g ( x )  as defined by equation ( 2 . 1 2 )  is the desired &approximation of n ‘ ” ’ ( x ) .  
The problem is solved. 

(ii) There are pairs of complex conjugate nodes xi and xi,  = x,?. For the correspond- 
ing amplitudes we get the relation 

( 2 . 1 7 )  pj  = p i ’ .  

For this case it is not possible to express the ml as moments of a sum of S-functions 
as in equation ( 2 . 1 2 ) .  Hence a rigorous solution does not exist in the sense stated above. 
For the second case there is, however, a way for obtaining at least an approximate 
solution. For this purpose we consider the contribution mf( j ,  j ’ )  of a pair of complex 
conjugate nodes xi and x i r = x T  to the moment of the Ith order: 

m l ( i , i ’ ) = p r r : + p ~ ( x i * ) ‘ .  ( 2 . 1 8 )  

* 

Decomposing xi and pi into their real and imaginary parts 

( 2 . 1 9 )  . It xi = x !  I +ix!’ I ,  p j  = p i  +1pj, 

respectively, we obtain 

(2 .20)  
2k<I  

This contribution can be interpreted as resulting from a term g ( x )  in equation ( 2 . 1 2 )  
of the form 

( 2 . 2 1 )  

In this case the derivative of the spectral density does not only contain S-functions, 
but also its derivatives. In principle this is an infinite series. Since we consider only 
the first 2 N  moments, we can truncate the series and retain only the finite sum 

which reproduces the correct contributions to the first 2 N  moments. 
Since in the applications the spectral density is found by integrating n g ) ( x )  v times, 

the derivatives of the S-functions of low order (less than v - 1 )  yield smooth contribu- 
tions to n N ( x ) ,  while the derivatives of higher order cause ‘steps’, S-peaks, and 
derivatives of S-peaks. Thus one would at first think that the method does not work 
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if complex solutions occur. But this is not the case. In our example the imaginary 
parts x ;  turned out to be small so that the contributions of the S-functions and their 
derivatives were negligible and smooth spectral densities were obtained. The contribu- 
tion of step functions, on the other hand, turned out to be significant in the vicinity 
of the van Hove singularities. But since the introduction of steps is suitable for the 
approximation of these singularities, the occurrence of complex solutions to equations 
(2.15) even improves the flexibility of the method. However, it may not always be 
true that the x ;  are small. Therefore the validity of this approximation depends on 
the actual problem. 

Nothing can be said about the convergence of this procedure when more and more 
moments are taken into account. The proofs on the convergence behaviour usually 
require the positiveness of the spectral function which is to be determined. Since 
n ( y ’ ( x )  is certainly not positive, the proofs are not applicable in this context. Our 
test calculations, however, show good convergence, even in the most unfavourable 
cases, where the spectral density is singular. As compared with the conventional 
methods which rely on additional smoothing procedures, our method turns out to 
work even better because the well known spurious oscillations in the vicinity of the 
singularities do not occur. 

3. Transformation to a continued fraction 

Instead of attempting to solve equations (2.13) for the nodes xi  and amplitudes pi  
directly, it is more convenient to approximate f (z)  of equation (2.1) and to determine 
the xi as the poles of a rational function h ( z )  of the complex variable z for which the 
first 2N coefficients mi of its asymptotic expansion 

agree with the set of numbers mo, m l ,  . . . , mZNel (Wall 1948, Shohat and Tamarkin 
1963). As we shall show later this can be achieved immediately by constructing a 
truncated continued fraction. The rational function obtained in this way has N poles 
zj ,  which can be complex, and can be written as 

For the sake of simplicity we again confine ourselves to the case that all the zj  are 
different. The asymptotic expansion of expression (3.2) yields 

(3.3) 
1 mi = C p j z j  

i 

with mi = mr for I = 0, . . . , 2 N  - 1, so that the poles of h (2) and the corresponding 
residues give the solution of equations (2.13). 

If all the z j  turn out to be real, h ( z )  is analytic in the upper and lower half-planes 
as is the functionf(z) defined by equation (2.1). If there are, however, some complex 
zj ,  h (2) has not the correct analytic properties corresponding to f ( z ) .  In this case one 
first has to determine g N ( x )  according to equation (2.22). Then the Cauchy-type 
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integral 

( 3 . 2 ~ )  

which is a rational function, has the desired analytic properties and asymptotic 
expansion. 

We now determine the continued fraction for an approximation of f ( z ) .  In the 
examples we approximate the spectral density by a function which is piecewise linear 
by applying the method to the second derivative of the spectral density. Therefore 
we have mo = ml  = 0 and m2 f 0 according to (2-11). For the general case let mlo be 
the first non-zero element of the set mo, . . . , m 2 N - l .  Then h ( z )  decreases asymptoti- 
cally as l / z f o t l .  It can be represented in the form 

for lo even or 

A - Z  
with Ab+2 = 1 

1 
7~ Z f i = o A f i z F  - r l ( z )  h ( z ) = -  f,+2 

( 3 . 4 ~ )  

(3 .4b)  

for lo odd, where r l ( z )  is asymptotically of the order l / z .  Because both cases are 
similar we only discuss the first (lo even). Equating the asymptotic expansion (3.1) of 
h ( z )  with mi = mi for I = 0, 1, . . . , 2 N  - 1 to the expression ( 3 . 4 ~ )  and comparing 
equal powers of z after multiplying by the denominator of (3.4a), we obtain 

A =mb,  
f ,+ l  

f i = f  
A,,m,-r-,,,=O for 1 = 0,. , . , lo 

and 
00 m 

r l ( z )  1 a n / z n  = b,/z"+' 
n = O  n = O  

where 

(3.7a, 6 )  

Equations (3.5) allow for a successive determination of A,  and A. In equation (3 .6)  
we introduce 

(3.8) 

where r 2 ( 2 )  is asymptotically of the order l /z .  Multiplying by the denominator of 
(3.8) and comparing equal powers of z yields 

r1(z )  = a1 / ( z  --A 1 - r2(2)) 

a1 = bdao,  A I  = bl /bo-a l /ao ,  

(3.9) 
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The equation for r Z ( z )  is of the same form as that for r l ( z ) ,  (3.6). Therefore the last 
step leading to equations (3.9) can be repeated as often as needed. In this way a 
continued fraction for r l ( z )  is generated. By the common methods the poles and the 
residues of the truncated continued fraction are determined, and from those n$’(x)  
is calculated. By integration n (x) is obtained. 

As is well known the generation of a continued fraction from the moments is 
numerically unstable. As far as the moments are given exactly, which is the case for 
our applications, the difficulties are avoided by multiple precision calculations. In 
contrast to the usual situation where the spectral density itself is approximated by S- 
functions and where the numerically stable recursion method works, there seems to 
be no analogue for the determination of approximants to the derivatives of the spectral 
function. 

4. Examples 

In order to test the method developed in the preceding sections we apply it to three 
examples for which the spectral density is known. We calculate the electronic density 
of states for a tight-binding Hamiltonian with only nearest-neighbour transfer matrix 
elements (i) for a one-dimensional crystal, (ii) for a two-dimensional square lattice 
and (iii) for a three-dimensional simple cubic lattice. 

For a one-dimensional tight-binding crystal the density of states per atom is 
( i )  One-dimensional crystal 

n ix)  = I / ~ ( I  --x’)~’’ (4.1) 
where the transfer matrix element is equal to i. For the moments we obtain in terms 
of the binomial coefficients 

(4.2) 

We want to represent the density of states by a continuous piecewise iinear function. 
Hence we must approximate the second derivative of n (x) by a series of S -functions. 
From equations (2.1 1) we obtain 

mo = MS’ = 0, 

(4.3) 

Since all moments of odd order are equal to zero, the nodes xi are distributed 
symmetrically with respect to the origin of the x axis and the corresponding amplitudes 
pi are equal. This can be taken into account by writing 

(4.4) 
j= l  

instead of (2.12), where x j  > 0 and N is the number of non-trivial moments. The 
equivalent of equation (2.13) reads 

(452)  
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(4.5b)  

Equations (4 .5b)  represent a problem of moments for the nodes xi' and the amplitudes 
qj =p ix :  with the moments f i 1  = m2(1-1). After solving this problem PO is determined 
by ( 4 . 5 ~ ) .  

The results of our calculations for N = 8 ,  14 and 20 are represented in figure 1. 
For N = 14 and N = 20 the agreement of our approximation and the exact result is 
rather good. For all N s 2 0  the nodes xi  turned out to be real with the exception of 
the node x j l  which is closest to 1. There is always a small imaginary part in x j l  which 
decreases with increasing N. For N = 20 we find x j l  = 1 + 0.004i. This imaginary part 
is important, for it produces the finite step of appreciable size (figure 1) which models 
the singularity of the density of states. Nevertheless the intimately related S -contribu- 
tion only little affects the density of states. For N = 20 this 8-contribution to n ( x )  
has a factor of 0.001 and is negligible. The same is true for the derivatives of the S -  
function. It is only the recalculation of the moments of high order for which the 
imaginary parts become important. 

X 

Figure 1. The density of states of a one-dimensional crystal at different stages of approxi- 
mation. The area contained in the 8-contributions is indicated by the filled rectangles at 
their respective positions. ( a ) :  N = 8 (- * - . - * -), N = 14(. a . I . . *). ( 6 ) :  N = 20 (- - - - - - 
), exact result (-). 

( i i )  Two-dimensional square lattice 
The density of states per atom for a square lattice with transfer matrix elements of 2 
between nearest neighbours is given by 

n ( x ) =  F('-" ?) 
T r  ( l + x )  1 + x ' 2  * 

(4 .6)  
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Here F(k,  ~ / 2 )  denotes the complete elliptic integral of the first kind 

d* .rr/2 io (1 - k 2  sin2 +)'I2' 
F ( k ,  ~ / 2 )  = (4.7) 

The density of states shows a logarithmic singularity at x = 0 and a finite step at x = 1. 
Since the local density of states is related to the Green function by 

n ( x ) = ( - l / ~ )  lim+Im Goo(x+iy) (4.8) 
Y + O  

its moments are conveniently calculated from the asymptotic expansion of the Green 
function which can be derived from its equation of motion 

~ G i j ( ~ ) - z  AfiGlj(z) = 6ij. (4.9) 
1 

Air denotes the transfer matrix elements 

for nearest neighbours, 1 
5 

= { 0 otherwise. 

Because the system is translationally invariant the global density of states is equal to 
the local density of states. For the moments we obtain 

(21)! 
M2ltl = 0. 

= & (11!)2(12!)z' 
I1+12= I 

(4.10) 

For the calculation of the density of states we proceed as in the first example. The 
results are shown in figure 2 for N = 10, 14 and 20. For all cases the agreement 

X 

Figure 2. The density of states of a square lattice at different stages of approximation. 
( a ) :  N = ~ O  ( - . - . - . _  1, ~ = 1 4  ( . . . . . .  *I .  ( b ) :  N = 2 0  (-------), exact result 
(-1. 
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between the exact result and the polygon is good with the possible exception of the 
region near x = 0. However, it is seen from the figure for N = 20 that the modelling 
of the logarithmic singularity is at any rate acceptable. 

It is only the region of x = 1 where imaginary parts occur. This is again an indication 
that imaginary parts are related to singularities in the true spectrum. Though the 
imaginary part is necessary for the generation of the step, its 8-contribution remains 
negligible. At  x = 0, which is a node by the prescription (4.4) and not as a consequence 
of the evaluation of (4.5b), no imaginary parts were found. Nevertheless the behaviour 
of the true density of states is met by the polygon approximation to a sufficient degree. 

There is no analytical expression for the density of states of cubium. However. 
numerical values are available (Wolfram and Callaway 1963). Using the same pro- 
cedure as for the two-dimensional case, however with A,, = k for nearest neighbours, 
we obtain 

(iii) Three-dimensional simple cubic crystal (‘cubium ’) 

I ,-!2+/3= i 

Our results for the density of states are represented in figure 3 for N = 8, 14, 20 and 
26. For N 2 14 we find close agreement with the exact nix) .  Even the van Hove 
singularities at x = f and at x = 1 are well reproduced. There are no spurious oscilla- 
tions in the vicinity of these singularities which arise from other methods. 

In table 1 we list the complex nodes in dependence on N. In all cases these nodes 
are close to the van Hove singularities or band edges. However, the occurrence of 

, 

X 

Figure 3, The density of states of cubium at different stages of approximation. The broken 
lines denote the position of the van Hove singularity. The area contained in the S-  
contributions is indicated by the filled rectangles at their respective positions. ( a ) :  ,li = 8 
(- . - .  - .  -), N =  14 (. ’ ‘ .). (b ) :  N = 2 0  ( - - - - - - - ) ,  N =26  (- 1. For N = 8 and 
N = 26 there is no 6-contribution. 
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Table 1. List of complex nodes and the weights w of their corresponding 6-functions 
which occurred for values 2 c N 26 for cubium. 

N x1 w1 x2 W2 

6 0.5904rt0.37451 - 5 . 6 ~  10 -~  - 
10 0.3094*0.1058i 7.4 x 1 0 - ~  - 
12 0.9984rt0.0063i -2.2 x 1 0 - ~  - 
14 0.3465*0.0144i 1.6 x - 
18 0.3058rt0.0321i 1 . 4 ~  1 0 - ~  - 
20 0.3257rt0.03283 1.2 x 1 0 - ~  0*0.3464i 4.8 x io-’ 
22 0.9996 f 0.0020i 4 x 

complex nodes does not seem to be systematic; for certain values of N,  all nodes turn 
out to be real. As in the former examples, the 8-contributions to the density of states 
due to the imaginary parts are negligible. For N = 20, besides the node at x = 0 which 
is introduced by construction, a pair of complex poles with real part x j  = 0 is found. 
The weight of the corresponding 8-function is 5 x lo-’ and does not influence the 
shape of the spectrum. Occasionally nodes occur which are distinctly beyond the 
limits of the exact spectrum. In all cases their amplitudes are extremely small and 
they can be neglected. 

5. Conclusion 

In the present paper we developed a new method for the generation of a continuous 
approximation to the density of states when its moments are known. The basic idea 
is to solve the problem of moments not for the density of states but rather for a 
derivative of a given order. This approach has the advantage that continuous curves 
are obtained. Although the essential requirement of positive definiteness is not met 
for the derivatives of spectral functions, a method is found to circumvent the difficulties 
arising from the nbn-definiteness. In three typical examples we demonstrated the 
application of the method. In these examples the true density of states shows sin- 
gularities of different type. In other methods, singularities frequently introduce 
spurious oscillations in the approximants of the density of states. But here such 
difficulties do not arise. This is because our method remains sufficiently flexible to 
incorporate singular points of the spectra in quite a simple manner. Thus it appears 
to be well suited for the calculation of spectral densities. 
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Appendix 

In this appendix we prove the thorem of 8 2. Consider the polynomial 

(AI) 
PO(Z)=ao+alz +a2z2+ .  . N 
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where UN = 1 and the other coefficients U, ( O s j s N  - 1) are still undetermined. 
Multiplying ( A l )  by z (0 < 1 < N - 1) we get the polynomials 

, . v  
(-42) 

i - 2  P 1 ( z ) = a o Z i t u 1 z ' - ' + u 2 z  + .  . .+ay.?* , 

These polynomials span a linear vector space for which we define a linear functional 
@ assigning the number mk to each power z : 

@[i '1 = mk,  f o r k = 0 , 1 ,  . . . .  2N-1. iA3) 
On the vector space we demand 

@ E O .  ('44) 

This implies the following system of linear equations for the a, (0 s j  -s 1%' - 1 !: 

moao+mlu l+ .  . .+mN..laN-l=-nzx, 

m l a o + m 2 u l t . .  . + m ~ a ~ - ~ = - m N + l :  ( ' 4 5 )  
I . .  

mN -lao + nzNa1 + . . . + m2N--2aN--I = -mZ5 - 1 .  

According to the assumption of the theorem the determinant of the system of equations 
is non-zero. Hence the a, are uniquely determined. 

The polynomial Po(z j possesses N uniquely determined, possibly complex zeros, 
z l ,  z 2 ,  . . . , zN .  For the sake of simplicity we confine ourselves to the case that z j  are 
all distinct. Let Fj(z) be the polynomial of degree N - 1 for which 

F,(zi) = St,, i , j ~ { 1 , 2 , .  . . , N }  ('46) 
holds. For an arbitrary function f i z )  the Lagrangian interpolation polynomial which 
agrees with f ( z )  in z l ,  z 2 ,  , . . , z N  is given by 

Its degree is not higher than N - 1. Choose especially f ( z  i = z . For 0 % 1 <- 9 - 1 I 
F ( z )  and f ( z )  are identical; for N s l <  2N - 1 we find 

('48) f ( z )  - F ( d  = P ( z ) P ~ ( z  1 

where P ( z )  is a polynomial of degree not higher than N - 1, The system of equations 
(A5) implies 

(A9) @ [ f ( i  \ -F(Z 13 = 0. 

Using the linearity of the functional and the explicit form of f ( z  we finally get 

@[z '1 = ml = @[F(Z I ]  

where we introduced 

pj  =@[F,(z)I. ( A l l  1 
The proof can be generalised to the case in which some of the zeros are of higher 
order. We omit it, because the proof becomes clumsy and this case is not of practical 
importance. 
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